Multilocus association testing with penalized regression
نویسندگان
چکیده
منابع مشابه
Multilocus association testing with penalized regression.
In multilocus association analysis, since some markers may not be associated with a trait, it seems attractive to use penalized regression with the capability of automatic variable selection. On the other hand, in spite of a rapidly growing body of literature on penalized regression, most focus on variable selection and outcome prediction, for which penalized methods are generally more effectiv...
متن کاملPenalized Regression with Ordinal Predictors
Ordered categorial predictors are a common case in regression modeling. In contrast to the case of ordinal response variables, ordinal predictors have been largely neglected in the literature. In this article penalized regression techniques are proposed. Based on dummy coding two types of penalization are explicitly developed; the first imposes a difference penalty, the second is a ridge type r...
متن کاملPenalized regression approaches to testing for quantitative trait-rare variant association
In statistical data analysis, penalized regression is considered an attractive approach for its ability of simultaneous variable selection and parameter estimation. Although penalized regression methods have shown many advantages in variable selection and outcome prediction over other approaches for high-dimensional data, there is a relative paucity of the literature on their applications to hy...
متن کاملPenalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملPenalized Regression for Genome-Wide Association Screening of Sequence Data
Whole exome and whole genome sequencing are likely to be potent tools in the study of common diseases and complex traits. Despite this promise, some very difficult issues in data management and statistical analysis must be squarely faced. The number of rare variants identified by sequencing is apt to be much larger than the number of common variants encountered in current association studies. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetic Epidemiology
سال: 2011
ISSN: 0741-0395
DOI: 10.1002/gepi.20625